National Repository of Grey Literature 15 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Steel-Concrete Columns Composed of High-Strength Materials
Röder, Václav ; Štěpánek, Petr (referee) ; Studnička,, Jiří (referee) ; Vičan,, Josef (referee) ; Karmazínová, Marcela (advisor)
The main objective of this thesis is the verification of the buckling strength of the composite compression members which were made from high-strength materials. This thesis is divided into four main chapters which are interconnected. The first chapter summarizes the current state of the problem of the compression members. The basis of this part is the elementary theories and researches, the task of this text is attempted to understand and obtain normative procedures which are important for practical use. The second part deals with the theoretical analysis of composite column, mainly with the examination of the individual effects on the buckling strength. The result of the first and the second parts is analytical algebraic equations which determine the buckling strength of the member. The third part contains the numerical analysis, which leads to create a numerical model of the compression column. The numerical model is used for the verification of the theoretical analysis and for the investigation of the behaviour of the column loaded by axial force. The last part deals with the experimental verification of the previous analyses. There are tested various types of the composite columns, which were made of steel with a yield strength up to 455 MPa and of the concrete with a cube compression strength up to 102 MPa. Experimental results confirmed the high reliability of centrally loaded column and every tested columns failed by flexural buckling. The final step is evaluation and comparison of the results obtained from previous four parts. It was founded that design criteria for centrally loaded steel-concrete column are too conservative and design relationships doesn´t use the positive properties of high-strength materials for economic design.
Studying the behavior of high strength concrete at high temperatures
Sovová, Kateřina ; Kirnbauer, tech Johannes (referee) ; Bodnárová, Lenka (advisor)
This master’s thesis is divided into two parts; practical and theoretical. The theoretical part of this study describes the influence of high temperature on concrete structure and chemical, mechanical and physical changes, which take place during the exposure to high temperatures. The thesis also evaluates spalling of concrete and the methods to prevent it, as well as the function of polypropylene and cellulose fibers in the concrete. The practical part deals with design, production and testing of the cement-based concrete with the use of different fibers (polypropylene fibers and cellulose fibers). The properties and the means of applications in high temperatures are also included. The practical part also assesses the influence of high temperature on strength, porosity, visual changes of specimens, changes of surface and degradation of testing specimens due to heat loads according to normative heat curve (ISO 834) and also according to hydrocarbon curve. For clearer arrangement, the experimental tests are divided into two parts and the measured values are evaluated at the end of each part. The conclusion resumes all data obtained by testing and evaluates what is the most suitable formulation. The approach for further research is also discussed.
High-performance concretes based on the secondary raw materials
Sáček, Josef ; Brandštetr, Jiří (referee) ; Šoukal, František (advisor)
This work is devoted to study of physical-mechanical properties and structure of high performance concretes (HPC) based on portland cement. The attention is focused on possibility of substitution of economic high-cost components of concrete with utilization of secondary raw materials or cheaper components. Properties of raw materials and their influence on whole quality of concrete were tracked by various methods. Mechanical properties of prepared HPC samples were tested especially (compression and flexural strength) with further microscopic study of structure. Isoperibolic calorimetry and X-ray powder diffraction method were also used for concrete characterisation. These methods allowed to determine the influence of raw materials on prepared HPC and to carry out a certain optimization among price and quality of this material.
Development and testing of high performance concrete for subtle structures
Myšičková, Lucie ; Cikrle, Petr (referee) ; Bílek, Vlastimil (advisor)
Thesis describes properties of HPC compared to concretes of normal and high strength. It further describes the input materials and the procedure for designing the composition of the mixture. It gives examples of already completed structures made of HPC. The experimental part describes the optimization of concrete mix and production of specimens. In the end results of testing the properties of the developed mixes from tests of dynamic and static modulus of elasticity, compressive strength and tensile strength by bending are described.
The use of micro and nanotechnology to develop ultra high strength and high performance concrete with special features
Vlč, Viktor ; Ťažký, Tomáš (referee) ; Hela, Rudolf (advisor)
The use of nanotechnology has become wide spread in all branches of science. Nanotechnology help us to understand microstructure and due to the world has started to produce new materials. One of many examples carbon nanotubes (CNTs). In diploma thesis I tried to find the way of successful introduction into concrete mixture. I was studying influence of CNTs and other nano particles and I was comparing them with referential samples (without CNTs). Also I tested the improvement of mechanical characteristics of concrete. The morphology of nano particles was studied using Scanning Electron Microscopy (SEM). The results show that introduction of nanoparticles to results in increasing strength and higher density. That is why High Performace Concrete so resistant and durable.
Behavior of concrete at high temperatures
Dvořáková, Michaela ; Bruckner,, Dipl Heinrich (referee) ; Bodnárová, Lenka (advisor)
The aim of this diploma thesis is to focus on the resistance of concrete exposed to high temperatures especially with focus of resistance against explosive spalling as well as clarifying the mode of action of various types of polypropylene fibres. The theoretical part is an introduction to the issues of explosive spalling, its mechanisms and majority influencing factors. Further description of the processes taking place in the structure of concrete under extreme thermal load, distribution and size of pores in concrete, thermal load, temperature-time curves and their applications, methods of elimination of negative behaviour of concrete exposed to thermal loading (passive and active methods), mode of action of polypropylene fibres and more is also included in the theoretical part. The main aim of experimental part is to verify the function of polypropylene fibers of various Melt Flow Indexes (MFI) and dosage. Primarily, the test samples with content of the PP-fibers are compared to the reference sample without fibers. Secondarily, the samples with standard PP-fibers (with MFI 25) with dosage 2.0 kg/m3 are compared to samples with modified PP-fiber (with MFI 2500) of dosage 0.9 kg/m3. Photogrammetric images were used for evaluation and comparison of spalled surfaces and its depth. Determination of the softening temperature and melting point of the modified and standard PP-fibers was made by using a high temperature microscope video. The second part of the experimental work was to define concrete permeability at different temperatures and pressures. Permeability was measured at temperatures of 20°C, 90°C, 150°C, 175°C, 200°C, 225°C and 250°C and at pressure of 0.2, 0.4 and 0.6 MPa.
Improving of dispersion of silica fume in high performance concrete
Janča, Martin ; Koutný, Ondřej (referee) ; Šiler, Pavel (advisor)
The goal of this work was to create a method for improving the dispersion of silica fumes for use in high performance concrete. Traditional methods used to design and manufacture high performance concrete emphasize the removal of coarse aggregates. Use of specially sorted fine aggregates at relatively low doses, the use of super-plasticizers and siliceous excrement. The low water content was achieved by using superplasticizer on a polycarboxylate basis. The standard ultrasound technology found in each laboratory was selected for the dispersion of silica fume. For experiments were we used dry silica fume powder and aqueous stabilized suspension. For comparison, were prepared different mixtures which showed the effects of the treatment prior to the use of silica fume.
The effect of micro-silica on the microscopic features of the UHPC composite and its inter-facial transition zone
Hrbek, Vladimír ; Prošek, Z. ; Chylík, R. ; Vráblík, L.
The uplift of concrete overall macroscopic performance by way of alternative additives is commonly used technique. In case of ultra high performance concrete (UHPC), micro-silica is added to the mixture as a micro-filler to the structure of cement binder. As a result, the cementitious matrix macro-mechanical performance is elevated. This paper is aimed on the UHPC micro-scale enhancement by different micro-silica additive content in the mixture. More closely, the study investigate the impact of the micro-silica on the inter-facial transition zone (ITZ) between the binder matrix and basaltic aggregate.
Improving of dispersion of silica fume in high performance concrete
Janča, Martin ; Koutný, Ondřej (referee) ; Šiler, Pavel (advisor)
The goal of this work was to create a method for improving the dispersion of silica fumes for use in high performance concrete. Traditional methods used to design and manufacture high performance concrete emphasize the removal of coarse aggregates. Use of specially sorted fine aggregates at relatively low doses, the use of super-plasticizers and siliceous excrement. The low water content was achieved by using superplasticizer on a polycarboxylate basis. The standard ultrasound technology found in each laboratory was selected for the dispersion of silica fume. For experiments were we used dry silica fume powder and aqueous stabilized suspension. For comparison, were prepared different mixtures which showed the effects of the treatment prior to the use of silica fume.
Studying the behavior of high strength concrete at high temperatures
Sovová, Kateřina ; Kirnbauer, tech Johannes (referee) ; Bodnárová, Lenka (advisor)
This master’s thesis is divided into two parts; practical and theoretical. The theoretical part of this study describes the influence of high temperature on concrete structure and chemical, mechanical and physical changes, which take place during the exposure to high temperatures. The thesis also evaluates spalling of concrete and the methods to prevent it, as well as the function of polypropylene and cellulose fibers in the concrete. The practical part deals with design, production and testing of the cement-based concrete with the use of different fibers (polypropylene fibers and cellulose fibers). The properties and the means of applications in high temperatures are also included. The practical part also assesses the influence of high temperature on strength, porosity, visual changes of specimens, changes of surface and degradation of testing specimens due to heat loads according to normative heat curve (ISO 834) and also according to hydrocarbon curve. For clearer arrangement, the experimental tests are divided into two parts and the measured values are evaluated at the end of each part. The conclusion resumes all data obtained by testing and evaluates what is the most suitable formulation. The approach for further research is also discussed.

National Repository of Grey Literature : 15 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.